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A Mathematical Preliminaries

A.1 Notation

P
summation

Xn

i¼1

ai ¼ a1 þ a2 þ # # # þ an:

Q
product (multiplication)

Yn

i¼1

ai ¼ a1a2 . . . an:

E for every

b there exists

) implies

, if and only if (implies and is implied by)

iff if and only if

U union (of sets)

V intersection (of sets)

Ac the complement of (the set) A

H a subset of

A belongs to, member of

B doesn’t belong to, not a member of

q the empty set

f : A ! B a function from the set A to the set B

A$ B the product set



R the set of real numbers

Rn the n-dimensional Euclidean space

½a; b" a closed interval fx A R j aa xa bg
ða; bÞ an open interval fx A R j a < x < bg
k % k norm, length of a vector

a, j % j cardinality of a set; if the set is denoted A, thenaA ¼ jAj
denotes its cardinality.

A.2 Sets

A set is a primitive notion. Sets are often denoted by capital letters, A,
B, C, . . . and indicated by braces f g. Inside these braces are listed the
elements of the set. For instance, A ¼ f0; 1g refers to the set consisting
of 0 and 1. Sets can also be described without listing all elements
explicitly inside the braces. For instance,

N ¼ f1; . . . ; ng

denotes the set of all natural numbers from 1 to n. Similarly, we define

N ¼ f1; 2; 3; . . .g

and

Z ¼ f. . . ;'1; 0; 1; . . .g

to be the set of natural numbers and the set of integer numbers,
respectively.

The notation a A A means that a is a member of the set A or that a
belongs to A. a B A is the negation of a A A.

The symbolHdesignates a relation between sets, meaning ‘‘is a sub-
set of.’’ Explicitly, AHB means that A is a subset of B, that is, for all
x A A, it is true that x A B. Thus, x A A iff fxgHA.

The symbol q denotes the empty set, the set that has no elements.
Sets are also defined by a certain condition that elements should sat-

isfy. For instance,

A ¼ fn A N j n > 3g

denotes all the natural numbers greater than 3, that is, A ¼ f4; 5; 6; . . .g.
R denotes the set of real numbers. I don’t define them here formally,

although they can be defined using the rationals, which are, in turn,
defined as the ratios of integer numbers.
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When we use mathematics to model reality, we also refer to sets
whose elements need not be mathematical objects. For instance,

A ¼ fhumansg;

B ¼ fmammalsg:

Such sets are viewed as sets of some mathematical objects interpreted
as humans or mammals, respectively. Thus, when we discuss a set of
individuals, alternatives, strategies, or states of the world, we mean a
set whose elements are interpreted as individuals, alternatives, and
so on.

The basic set operations are as follows.
Union ðUÞ. A binary operation on sets, resulting in a set containing all

the elements that are in at least one of the sets. Or, for sets A and B,

AUB ¼ fx j x A A or x A Bg:

Here and elsewhere, or is inclusive, that is, ‘‘p or q’’ means ‘‘p, or q, or
possibly both.’’

Intersection ðVÞ. A binary operation resulting in elements that are in
both sets. That is,

AVB ¼ fx j x A A and x A Bg

Two sets A and B are disjoint if they have an empty intersection, that
is, if AVB ¼ q.

Complement (c). A unary operation containing all elements that are
not in the set. To define it, we need a reference set. That is, if S is the
entire universe,

Ac ¼ fx j x B Ag:

You may verify that

ðAcÞc ¼ A;

AVBHA;BHAUB;

AVAc ¼ q;

ðAUBÞc ¼ Ac VBc;

ðAVBÞc ¼ Ac UBc;

and
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AV ðBUCÞ ¼ ðAVBÞU ðAVCÞ;

AU ðBVCÞ ¼ ðAUBÞV ðAUCÞ:

Given two sets A and B, we define their (Cartesian) product A$ B to
be all the ordered pairs whose first element is from A and whose sec-
ond element is from B. In formal notation,

A$ B ¼ fðx; yÞ j x A A and y A Bg:

Note that ðx; yÞ is an ordered pair because the order matters. That is,
ðx; yÞ0 ðy; xÞ unless x ¼ y. This is distinct from the set containing x
and y, in which the order does not matter. That is, fx; yg ¼ fy; xg.

The notation A2 means A$ A. Thus, it refers to the set of all the
ordered pairs each element of which is in A. Similarly, we define

An ¼ A$ % % % $ A ¼ fðx1; . . . ; xnÞ j xi A A; ia ng:

The power set of a set A is the set of all subsets of A. It is denoted

2A ¼ PðAÞ ¼ fB jBHAg:

A.3 Relations and Functions

A binary relation is a subset of ordered pairs. Specifically, if R is a bi-
nary relation from a set A to a set B, we mean that

RHA$ B:

This is an extensional definition. The relation R is defined by a list of all
pairs of elements in A and in B such that the former relates to the latter.
For instance, consider the relation R, ‘‘located in,’’ from the set of build-
ings A to the set of cities B. Then, if we have

R ¼
ðEmpire_State_Building,New_YorkÞ;

ðLouvre,ParisÞ;
ðBig_Ben,LondonÞ; . . .

8
><

>:

9
>=

>;

we wish to say that the Empire State Building relates to New York by
the relation ‘‘located in,’’ that is, it is in New York; the building of the
Louvre is in Paris; and so forth.

For a relation RHA$ B we can define the inverse relation, R&1 H
B$ A by

R&1 ¼ fðy; xÞ j ðx; yÞHRg:
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Of particular interest are relations between elements of the same set.
For a set A, a binary relation on A is a relation RHA2ð¼ A# AÞ. For
instance, if A is the set of people, then ‘‘child_of’’ is a relation given by

R ¼
ðCain,AdamÞ;
ðCain,EveÞ;

ðAbel,AdamÞ; . . .

8
><

>:

9
>=

>;
;

and the relation ‘‘parent_of’’ will be

R%1 ¼
ðAdam,CainÞ;
ðEve,CainÞ;

ðAdam,AbelÞ; . . .

8
><

>:

9
>=

>;
:

A function f from A to B, denoted

f : A ! B;

is a binary relation RHA# B such that for every x A A, there exists
precisely one y A B such that ðx; yÞ A R. We then write

f ðxÞ ¼ y

or

f : x 7! y:

The latter is also used to specify the function by a formula. For in-
stance, we can think of the square function f : R ! R defined by

f ðxÞ ¼ x2

or write

f : x 7! x2:

A function f : A ! B is 1–1 (one-to-one) if it never attaches the same
y A B to different x1; x2 A A, that is, if

f ðx1Þ ¼ f ðx2Þ ) x1 ¼ x2:

A function f : A ! B is onto if every y A B has at least one x A A such
that f ðxÞ ¼ y.

If f : A ! B is both one-to-one and onto, we can define its inverse

f%1 : B ! A
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by

f!1ðyÞ ¼ x , y ¼ f ðxÞ:

Observe that the notation f!1 is consistent with the notation R!1 for
relations. Recalling that a function is a relation, one can always define
f!1 as

f!1 ¼ fðy; xÞ j y ¼ f ðxÞg;

and if f is one-to-one and onto, this relation is indeed a function, and it
coincides with the inverse function of f.

We often also use the notation

f!1ðxÞ ¼ fy A B j y ¼ f ðxÞg:

With this notation, to say that f is one-to-one is equivalent to saying
that f!1ðxÞ has at most one element for every x. To say that it is onto is
equivalent to saying that f!1ðxÞ is nonempty. And if f is both one-to-
one and onto (a bijection), f!1ðxÞ has exactly one element for each x.
Then, according to the set notation, for a particular y,

f!1ðxÞ ¼ fyg;

and according to the inverse function notation,

f!1ðxÞ ¼ y:

Using f!1 both for the element y and for the set containing only y
seems problematic when one is just starting to deal with formal
models, but it becomes more common as one advances. This is called
an abuse of notation, and it is often acceptable as long as readers
know what is meant by it.

Interesting properties of binary relations on a set RHA2 include the
following.

R is reflexive if Ex A A, xRx, that is, every x relates to itself. For in-
stance, the relations ¼ andbon R are reflexive, but > isn’t.

R is symmetric if Ex; y A A, xRy implies yRx, that is, if x relates y, then
the converse also holds. For instance, the relation ¼ (on R) is symmet-
ric, butb and > aren’t. Notice that > does not allow any pair x, y to
have both x > y and y > x, that is,

>V>!1 ¼ >V< ¼ q;
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whereasbdoes because if x ¼ y, it is true that xb y and yb x. Butb is
not symmetric because it is not always the case that xRy implies yRx.

R is transitive if Ex; y; z A A, xRy and yRz imply xRz, that is, if x
relates to z through y, then x relates to z also directly. For example, ¼,
b, and > on R are all transitive, but the relation ‘‘close to’’ defined by

xRy , jx" yj < 1

is not transitive.
A relation that is reflexive, symmetric, and transitive is called an

equivalence relation. Equality ¼ is such a relation. Also, ‘‘having the
same square,’’ that is,

xRy , x2 ¼ y2;

is an equivalence relation.
In fact, a relation R on a set A is an equivalence relation if and only if

there exist a set B and a function f : A ! B such that

xRy , f ðxÞ ¼ f ðyÞ:

A.4 Cardinalities of Sets

The cardinality of a set A, denotedaA or jAj, is a measure of its size. If
A is finite, the cardinality is simply the number of elements in A. If A is
finite and jAj ¼ k, then the number of subsets of A is

jPðAÞj ¼ 2k:

If we have also jBj ¼ m, then

jA% Bj ¼ km:

Applied to the product of a set with itself,

jAnj ¼ kn:

For infinite sets the measurement of the size, or cardinality, is more
complicated. The notation y denotes infinity, but it does not distin-
guish among infinities. And it turns out that there are meaningful
ways in which infinities may differ.

How do we compare the sizes of infinite sets? The basic idea is this.
Suppose we are given two sets A and B, and a one-to-one function
f : A ! B. Then we want to say that B is at least as large as A, that is,
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jBjb jAj:

If the converse also holds, that is, there also exists a one-to-one func-
tion g : B ! A, then we also have jAjb jBj, and together these imply
that A and B have the same cardinality, jAj ¼ jBj. (In this case it is also
true that there is a one-to-one and onto function from A to B.) Other-
wise, we say that the cardinality of B is larger than that of A, jBj > jAj.

For example, if

A ¼ f1; 2; . . .g;

B ¼ f2; 3; . . .g;

we find that the function f : A ! B defined by f ðnÞ ¼ nþ 1 is one-to-
one and onto between A and B. Thus, the two sets are just as large.
There is something counterintuitive here. A contains all of B plus one
element, 1. So it feels like A should be strictly larger than B. But there
is no interesting definition of the size of a set that distinguishes be-
tween A and B. The reason is that the bijection f suggests that we think
of B as identical to A, with a renaming of the elements. With a bijection
between two sets, it’s hopeless to try to assign them different sizes.

By the same logic, the intervals

½0; 1& ¼ fx A R j 0a xa 1g

and

½0; 2& ¼ fx A R j 0a xa 2g

are of the same cardinality because the function f ðxÞ ¼ 2x is a bijection
from the first to the second. This is even more puzzling because these
intervals have lengths, and the length of ½0; 2& is twice as large as that
of ½0; 1&. Indeed, there are other concepts of size in mathematics that
would be able to capture that fact. But cardinality, attempting to count
numbers, doesn’t.

The cardinality of ð'1; 1Þ is identical to that of the entire real line, R,
even though the length of the former is finite and of the latter infinite.
(Use the functions tag/arctag to switch between the two sets.)

Combining these arguments, we see that R has the same cardinality
as ½0; 1&, or ½0; 0:1&, or ½0; e& for any e > 0.

Continuing with the list of counterintuitive comparisons, we find
that the naturals N ¼ f1; 2; 3; . . .g and the integers Z ¼ f. . . ;'1; 0;
1; . . .g are of the same cardinality even though the integers include all
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the naturals, their negatives, and zero. Clearly, we can have a one-to-
one function from N to Z: the identity ð f ðnÞ ¼ nÞ. But we can also map
Z to N in a one-to-one way. For instance, consider the following enu-
meration of Z:

Z ¼ f0; 1;$1; 2;$2; 3;$3; . . .g;

that is,

0 7! 1

1 7! 2

$1 7! 3

..

.

k 7! 2k

$k 7! 2k þ 1

This function from Z to N is one-to-one (and we also made it onto).
Similarly, the set of rational numbers

Q ¼ a

b

!!!! a A Z; b A N

" #

is of the same cardinality as N. As previously, it is easy to map N into
Q in a one-to-one way because NHQ. But the converse is also true.
We may list all the rational numbers in a sequence q1; q2; . . . such that
any rational will appear in a certain spot in the sequence, and no two
rational numbers will claim the same spot. For instance, consider the
table

0 1 $1 2 $2 . . .

1 q1 q2 q4 q7 . . .
2 q3 q5 q8 . . .
3 q6 q9 . . .
4 q10 . . .
. . . . . .

Note that different representations of the same rational number are
counted several times. For instance, q1 ¼ q3 ¼ & & & ¼ 0. Hence, define
the function from Q to N as follows: for q A Q, let f ðqÞ be the minimal
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n such that qn ¼ 9, where qn is defined by the table. Clearly, every q
appears somewhere in the list q1; q2; . . . ; hence this function is well de-
fined. It is one-to-one because each qn can equal only one number in Q.

It seems at this point that all infinite sets are, after all, of the same
size. But this is not the case. We concluded that the sets

N;Z;Q

are of the same cardinality, and so are

R; ½0; 1#; ½0; e#

for any e > 0. But the cardinality of the first triple is lower than the car-
dinality of the second.

Clearly, the cardinality of N cannot exceed that of R, because NHR,
and thus the identity function maps N into R in a one-to-one manner.
The question is, can we have the opposite direction, namely, can we
map R into N in a one-to-one way, or equivalently, can we count the
elements in R? The answer is negative. There are at least three insight-
ful proofs of this fact (not provided here). It suffices to know that there
are sets that are not countable, and any interval with a positive length
is such a set. Thus, in a well-defined sense, there are as many rational
numbers as there are natural numbers, and there are as many numbers
in any interval as there are in the entire real line (and, in fact, in any
Rn), but any interval (with a positive length) has more points than the
natural (or the rational) numbers.

A.5 Calculus

A.5.1 Limits of Sequences

The notion of a limit is intuitive and fundamental. What is the limit of 1
n

as n ! y? It is zero. We write this as

lim
n!y

1

n
¼ 0

or

1

n
!n!y 0:

Formally, we say that a sequence of real numbers fang converges to
a number b, denoted
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an !n!y b

or

lim
n!y

an ¼ b

if the following holds: for every e > 0 there exists N such that

nbN

implies

jan " bj < e:

Intuitively, fang converges to b if it gets closer and closer to b. How
close? As close as we wish. We decide how close to b we want the se-
quence to be, and we can then find a place in the sequence, N, such
that all numbers in the sequence from that place on are as close to b as
we requested.

If the sequence converges to y (or "y), we use a similar definition,
but we have to redefine the notion of ‘‘close to.’’ Being close to y
doesn’t mean having a difference of no more than e, but rather, being
large. Formally, an !n!y y if, for every M, there exists N such that

nbN ) an > M;

and a similar definition is used for convergence to "y.

A.5.2 Limits of Functions

Again, we intuitively understand what is the limit of a function at a
point. For instance, if x is a real-valued variable ðx A RÞ, we can agree
that

lim
x!y

1

x
¼ 0

and

lim
x!0

1

x2
¼ y:

The formal definition of a limit is the following. The statement

lim
x!a

f ðxÞ ¼ b
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or

f ðxÞ !x!a b

means that for every e > 0, there exists a d > 0 such that

jx# aj < d

implies

j f ðxÞ # bj < e:

That is, if we know that we want the value of the function to be close
to (within e of) the limit b, we just have to be close enough to (within d

of) the argument a.
The proximity of the argument is defined a little differently when we

approach infinity. Being close to y doesn’t mean being within d of it,
but being above some value. Explicitly, the statement

lim
x!y

f ðxÞ ¼ b

or

f ðxÞ !x!y b

means that for every e > 0, there exists M such that

x > M

implies

j f ðxÞ # bj < e:

Similarly, if we wish to say that the function converges to y as x
converges to a, we say that for every M, there exists a d > 0 such that

jx# aj < d

implies

f ðxÞ > M:

Similar definitions apply to limx!y f ðxÞ ¼ y and to the case in
which x or f ðxÞ is #y.

A.5.3 Continuity
A function f : R ! R is continuous at a point a if it equals its own
limit, that is, if
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lim
x!a

f ðxÞ ¼ f ðaÞ:

The same definition applies to multiple variables. If we have
f : Rn ! R, we say that f is continuous at x if f ðxÞ ! f ðaÞ whenever
x ! a. Specifically, f is continuous at a A Rn if for every e > 0, there
exists d > 0 such that kx$ ak < d implies j f ðxÞ $ f ðaÞj < e.

A.5.4 Derivatives

The derivative of a real-valued function of a single variable, f : R ! R,
at a point a, is defined as

f 0ðaÞ ¼ df

dx
ðaÞ ¼ lim

x!a

f ðxÞ $ f ðaÞ
x$ a

:

If we draw the graph of the function and let x0 a be close to a,
f ðxÞ$ f ðaÞ

x$a is the slope of the string connecting the point on the graph cor-
responding to a, ða; f ðaÞÞ and the point corresponding to x, ðx; f ðxÞÞ.
The derivative of f at the point a is the limit of this slope. Thus, it is
the slope of the graph at the point a, or the slope of the tangent to the
function.

When we say that a function has a derivative at a point a, we mean
that this limit exists. It may not exist if, for instance, the function has a
kink at a (for instance, f ðxÞ ¼ jx$ aj), or if the function is too wild to
have a limit even when x approaches a from one side.

The geometric interpretation of the derivative f 0 is therefore the
slope of the function, or its rate of increase, that is, the ratio between
the increase (positive or negative) in the value of the function relative
to a small change in the variable x. If x measures time, and f ðxÞ mea-
sures the distance from a given point, f 0ðxÞ is the velocity. If x mea-
sures the quantity of a good, and uðxÞ measures the utility function,
then u 0ðxÞ measures the marginal utility of the good.

A function that always has a derivative is called differentiable. At
every point a, we can approximate it by the linear function that is its
tangent,

gðxÞ ¼ f ðaÞ þ ðx$ aÞ f 0ðaÞ;

and for values of x close to a, this approximation will be reasonable.
Specifically, by definition of the derivative, the difference between the
approximation, gðxÞ, and the function, f ðxÞ, will converge to zero faster
than x converges to a:
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gðxÞ # f ðxÞ
x# a

¼ f ðaÞ # f ðxÞ # ðx# aÞ f 0ðaÞ
x# a

¼ f ðaÞ # f ðxÞ
x# a

# f 0ðaÞ;

where the definition of the derivative means that the latter converges
to zero as x ! a.

Thus, the zero-order approximation to the function f around a is
the constant f ðaÞ. The first-order approximation is the linear func-
tion f ðaÞ þ ðx# aÞ f 0ðaÞ. Using higher-order derivatives (derivatives of
derivatives of . . . the derivative), one can get higher-order approxima-
tions of f by higher-order polynomials in x.

A.5.5 Partial Derivatives
When we have a function of several variables,

f : Rn ! R

we can consider the rate of the change in the function relative to each
of the variables. If we wish to see what is the impact (on f ) of chang-
ing, say, only the first variable x1, we can fix the values of the other
variables x2; . . . ; xn and define

fx2;...;xnðx1Þ ¼ f ðx1; x2; . . . ; xnÞ:

Focusing on the impact of x1, we can study the derivative of fx2;...;xn .
Since the other variables are fixed, we call this a partial derivative,
denoted

qf

qx1
ðx1; x2; . . . ; xnÞ ¼

d fx2;...;xn
dx1

ðx1Þ:

A function f : Rn ! R is called differentiable if it can be approxi-
mated by a linear function. Specifically, at a point a, define

gðxÞ ¼ f ðaÞ þ
Xn

i¼1

ðxi # aiÞ
qf

qx1
ðxÞ

and require that

jgðxÞ # f ðxÞj
kx# ak

converge to 0, as kx# ak does.
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A.6 Topology

Topology is the study of the abstract notion of convergence. We only
need the standard topology here, and the definitions of convergence
are given with respect to this topology, as are the definitions that fol-
low. However, it is worthwhile to recall that there can be other topolo-
gies and, correspondingly, other notions of convergence.

A set AHRn is open if for every x A A, there exists e > 0 such that

kx! yk < e ) y A A:

That is, around every point in the set A we can draw a small ball, per-
haps very small but with a positive radius e (the more general concept
is an open neighborhood) such that the ball will be fully contained in A.

The set

ð0; 1Þ ¼ fx A R j 0 < x < 1g

is open (the open interval). Similarly, for n ¼ 2, the following sets are
open:

fðx; yÞ A R2 j x2 þ y2 < 1g

fðx; yÞ A R2 j 3xþ 4y < 17g

R2

A set AHRn is closed if for every convergent sequence of points in it,
ðx1; x2; . . .Þ with xn A A and xn !n!y x&, the limit point is also in the
set, that is, x& A A.

The set ½0; 1( ¼ fx A R j 0a xa 1g is closed in R. The following sub-
sets of R2 are closed (in R2):

fðx; yÞ A R2 j x2 þ y2 a 1g

fðx; yÞ A R2 j 3xþ 4ya 17g

R2

The set

½0; 1Þ ¼ fx A R j 0a x < 1g

is neither open nor closed. It is not open because 0 A ½0; 1Þ, but no open
neighborhood of 0 is (fully) contained in A. It is not closed because the
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sequence xn ¼ 1" 1=n is a convergent sequence of points in A, whose
limit (1) is not in A.

In Rn, the only two sets that are both open and closed are the entire
space (Rn itself) and the empty set. This is true in any space that we
call connected.

A.7 Probability

A.7.1 Basic Concepts
Intuitively, an event is a fact that may or may not happen, a proposi-
tion that may be true or false. The probability model has a set of states
of the world, or possible scenarios, often denoted by W or by S. Each
state s A S is assumed to describe all the relevant uncertainty. An event
is then defined as a subset of states, that is, as a subset AH S. When S
is infinite, we may not wish to discuss all subsets of S. But when S is fi-
nite, there is no loss of generality in assuming that every subset is an
event that can be referred to.

The set-theoretic operations of complement, union, and intersection
correspond to the logical operations of negation, disjunction, and con-
junction. For example, if we roll a die and

S ¼ f1; . . . ; 6g;

we can think of the events

A ¼ “The die comes up on an even number” ¼ f2; 4; 6g

B ¼ “The die comes up on a number smaller than 4” ¼ f1; 2; 3g

and then Ac ¼ f1; 3; 5g designates the event ‘‘the die comes up on an
odd number,’’ that is, the negation of the proposition that defines A,
and Bc ¼ f4; 5; 6g is the event described by ‘‘the die comes up on a
number that is not smaller than 4.’’ Similarly, AUB ¼ f1; 2; 3; 4; 6g
stands for ‘‘the die comes up on a number that is smaller than 4, or
even, or both,’’ and AVB ¼ f2g is defined by ‘‘the die comes up on a
number that is both even and smaller than 4.’’

Probability is an assignment of numbers to events, which is sup-
posed to measure their plausibility. The formal definition is simpler
when S is finite, and we can refer to all subsets of S. That is, the set of
events is

2S ¼ fA jAH Sg:
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A probability is a function

P : 2S ! R

that satisfies three properties:

1. PðAÞb 0 for every AH S;

2. Whenever A;BH S are disjoint (i.e., AVB ¼ q),

PðAUBÞ ¼ PðAÞ þ PðBÞ;

3. PðSÞ ¼ 1.

The logic behind these conditions is derived from two analogies.
First, we can think of a probability of an event as its relative frequency.
Relative frequencies are non-negative (property 1), and they are added
up when we discuss two disjoint events (property 2). The relative fre-
quency of S, the event that always occurs, is 1 (property 3).

The second analogy, which is particularly useful when an event is
not repeated in the same way and relative frequencies cannot be
defined, is the general notion of a measure. When we measure the
mass of objects or the length of line segments or the volume of bodies,
we use numerical functions on subsets (of matter, of space) that satisfy
the first two properties. For example, the masses of objects are never
negative, and they add up when we take together two objects that had
nothing in common. The last property is a matter of normalization, or
a choice of the unit of measurement so that the sure event will always
have the probability 1.

It is easy to verify that a function P satisfies the additivity condition
(property 2) if and only if it satisfies, for every A;BH S,

PðAUBÞ ¼ PðAÞ þ PðBÞ % PðAVBÞ:

These three properties imply that PðqÞ ¼ 0, so that the impossible
event has probability 0.

When S is finite, say, S ¼ f1; . . . ; ng, we say that p ¼ ðp1; . . . ; pnÞ is a
probability vector on S if

pi b 0; Eia n;

and

Xn

i¼1

pi ¼ 1:
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For every probability P : 2S ! ½0; 1", there exists a probability vector
p such that

PðAÞ ¼
X

i AA

pi; EAH S;

and vice versa, every probability vector p defines a probability P by
this equation. Thus, the probabilities on all events are in a one-to-one
correspondence with the probability vectors on S.

A.7.2 Random Variables
Consider a probability model with a state space S and a probability on
it P, or equivalently, a probability vector p on S. In this model a ran-
dom variable is defined to be a function on S. For example, if X is a
random variable that assumes real numbers as values, we can write
it as

X : S ! R:

The point of this definition is that a state s A S contains enough infor-
mation to know anything of importance. If the focus is on a variable X,
each state should specify the value that X assumes. Thus, XðsÞ is a
well-defined value, about which there is no uncertainty. Any previous
uncertainty is incorporated into the uncertainty about which state s
obtains. But given such a state s, no uncertainty remains.

Observe that we can use a random variable X to define events. For
instance, ‘‘X equals a’’ is the name of the event

fs A S jXðsÞ ¼ ag;

and ‘‘X is no more than a’’ is

fs A S jXðsÞa ag;

and so forth.
Often, we are interested only in the probability that a random vari-

able will assume certain values, not at which states it does so. If X
takes values in some set X , we can then define the distribution of a ran-
dom variable X, as a function fX : X ! ½0; 1" by

fXðxÞ ¼ PðX ¼ xÞ ¼ Pðfs A S jXðsÞ ¼ xgÞ:

For real-valued random variables, there are several additional useful
definitions. The cumulative distribution of X, FX : R ! ½0; 1" is
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FXðxÞ ¼ PðXa xÞ ¼ Pðfs A S jXðsÞa xgÞ:

It is thus a nondecreasing function of x going from 0 (when x is below
the minimal value of X) to 1 (when x is greater than or equal to the
maximal value of X). This definition can also be used when the state
space is infinite and X may assume infinitely many real values.

Trying to summarize the information about a random variable X,
there are several central measures. The most widely used is the expecta-
tion, or the mean, which is simply a weighted average of all values of X,
where the probabilities serve as weights:

EX ¼
X

x

fXðxÞx

and (in a finite state space with generic element i),

EX ¼
Xn

i¼1

piXðiÞ:

The most common measure of dispersion around the mean is the
variance, defined by

varðXÞ ¼ E½ðX % EXÞ2&:

It can be verified that

varðXÞ ¼ E½X2& % ½EX&2:

Since the variance is defined as the expectation of squared deviations
from the expectation, its unit of measurement is not intuitive (it is the
square of the unit of measurement of X). Therefore, we can often use
the standard deviation, defined by

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p
:

Expectation behaves in a linear way. If X, Y are real-valued random
variables, and a; b A R, then

E½aX þ bY& ¼ aEX þ bEY:

For the variance of sums (or of linear functions in general), we need
to take into account the relation between X and Y. The covariance of X
and Y is defined as

covðX;YÞ ¼ E½ðX % EXÞðY% EYÞ&:
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Intuitively, the covariance tries to measure whether X and Y go up and
down together, or whether they tend to go up and down in different
directions. If they do go up and down together, whenever X is rela-
tively high (above its mean, EX), Y will be relatively high (above its
mean, EY), and ðX " EXÞðY" EYÞ will be positive. And whenever X is
below its mean, Y will be also be below its mean, resulting in a positive
product ðX " EXÞðY" EYÞ. By contrast, if Y tends to be relatively high
(above EY) when X is relatively low (below EX), and vice versa, there
will be more negative values of ðX " EXÞðY" EYÞ. The covariance is
an attempt to summarize the values of this variable. If covðX;YÞ > 0,
then X and Y are positively correlated; if covðX;YÞ < 0, X and Y are neg-
atively correlated; and if covðX;YÞ ¼ 0, X and Y are uncorrelated.

Equipped with the covariance, we can provide a formula for the
variance of a linear combination of random variables:

var½aX þ bY' ¼ a2 varðXÞ þ 2ab covðX;YÞ þ b2 varðYÞ:

The formulas for expectation and variance also extend to more than
two random variables:

E
Xn

i¼1

aiXi

 !

¼
Xn

i¼1

aiEXi

and

var
Xn

i¼1

aiXi

 !

¼
Xn

i¼1

a2i varðXiÞ þ 2
Xn

i¼1

X

j0i

aiaj covðXi;XiÞ:

A.7.3 Conditional Probabilities

The unconditional probability of an event A, PðAÞ, is a measure of the
plausibility of A occurring a priori, when nothing is known. The condi-
tional probability of A given B, PðAjBÞ, is a measure of the likelihood of
A occurring once we know that B has already occurred.

Bayes suggested that this conditional probability be the ratio of the
probability of the intersection of the two events to the probability of
the event that is known to have occurred. That is, he defined the condi-
tional probability of A given B to be

PðAjBÞ ¼ PðAVBÞ
PðBÞ

:

(This definition only applies if PðBÞ > 0.)
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The logic of this definition is as follows. Assume that event B has
occurred. What do we think about A? For A to occur now, the two
events, A and B, have to occur simultaneously. That is, we need their
intersection, AVB, to occur. The probability of this happening was esti-
mated (a priori) to be the numerator PðAVBÞ. However, if we just take
this expression, probabilities will not sum up to 1. Indeed, the sure
event will not have a probability higher than PðB). We have a conven-
tion that probabilities sum up to 1. It is a convenient normalization be-
cause when we say that an event has probability of, say, .45, we don’t
have to ask .45 out of how much. We know that the total has been nor-
malized to 1. To stick to this convention, we divide the measure of like-
lihood of A in the presence of B, PðAVBÞ, by the maximal value of
this expression (over all A’s), which is PðBÞ, and this results in Bayes’
formula.

Observe that this formula makes sense in extreme cases. If A is
implied by B, that is, if B is a subset of A (whenever B occurs, so does
A), then AVB ¼ B, and we have PðAVBÞ ¼ PðBÞ and PðAjBÞ ¼ 1; that
is, given that B has occurred, A is a certain event. At the other extreme,
if A and B are logically incompatible, then their intersection is the
empty set, AVB ¼ q and there is no scenario in which both material-
ize. Then PðAVBÞ ¼ PðqÞ ¼ 0 and PðAjBÞ ¼ 0; that is, if A and B are
incompatible, then the conditional probability of A given B is zero.

If two events are independent, the occurrence of one says nothing
about the occurrence of the other. In this case the conditional probabil-
ity of A given B should be the same as the unconditional probability of
A. Indeed, one definition of independence is

PðAVBÞ ¼ PðAÞPðBÞ;

which implies

PðAjBÞ ¼ PðAVBÞ
PðBÞ ¼ PðAÞPðBÞ

PðBÞ ¼ PðAÞ:

Rearranging the terms in the definition of conditional probability, for
any two events A and B (independent or not),

PðAVBÞ ¼ PðBÞPðAjBÞ

¼ PðAÞPðBjAÞ;

that is, the probability of the intersection of two events (the proba-
bility of both occurring) can be computed by taking the unconditional
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probability of one of them and multiplying it by the conditional proba-
bility of the second given the first. Clearly, if the events are indepen-
dent, and

PðAjBÞ ¼ PðAÞ;

PðBjAÞ ¼ PðBÞ;

the two equations boil down to

PðAVBÞ ¼ PðAÞPðBÞ:

Note that the formula PðAVBÞ ¼ PðBÞPðAjBÞ applies also if indepen-
dence does not hold. For example, the probability that a candidate
wins a presidency twice in a row is the probability that she wins the
first time, multiplied by the conditional probability that she wins the
second time given that she has already won the first time.

Let there be two events A and B such that PðBÞ;PðBcÞ > 0. We note
that

A ¼ ðAVBÞU ðAVBcÞ

and

ðAVBÞV ðAVBcÞ ¼ q:

Hence

PðAÞ ¼ PðAVBÞ þ PðAVBcÞ

and, combining the equalities,

PðAÞ ¼ PðAjBÞPðBÞ þ PðAjBcÞPðBcÞ:

Thus, the overall probability of A can be computed as a weighted aver-
age, with weights PðBÞ and PðBcÞ ¼ 1% PðBÞ, of the conditional proba-
bility of A given B and the conditional probability of A given Bc.

A.7.4 Independence and i.i.d. Random Variables

Using the concept of independent events, we can also define indepen-
dence of random variables. Let us start with two random variables X,
Y that are defined on the same probability space. For simplicity of no-
tation, assume that they are real-valued:

X;Y : S ! R:
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Then, given a probability P on S, we can define the joint distribution of
X and Y to be the function fX;Y : R2 ! ½0; 1" defined by

fX;Yðx; yÞ ¼ PðX ¼ x;Y ¼ yÞ

¼ Pðfs A S jXðsÞ ¼ x;YðsÞ ¼ ygÞ:

We say that X and Y are independent random variables if, for every x, y,

fX;Yðx; yÞ ¼ fXðxÞ fYðyÞ:

In other words, every event that is defined in terms of X has to be inde-
pendent of any event that is defined in terms of Y. Intuitively, anything
we know about X does not change our belief about (the conditional
distribution of) Y.

If the state space is not finite, similar definitions apply to cumulative
distributions. We can then define independence by the condition

FX;Yðx; yÞ ¼ PðXa x;Ya yÞ

¼ PðXa xÞPðYa yÞ

¼ FXðxÞFYðyÞ:

All these definitions extend to any finite number of random vari-
ables. Thus, if X1; . . . ;Xn are random variables, their joint distribution
and their joint cumulative distributions are, respectively,

fX1;...;Xn : R
n ! ½0; 1"

and

FX1;...;Xn : R
n ! ½0; 1"

defined by

fX1;...;Xnðx1; . . . ; xnÞ ¼ PðX1 ¼ x1; . . . ;Xn ¼ xnÞ

and

FX1;...;Xnðx1; . . . ; xnÞ ¼ PðX1 a x1; . . . ;Xn a xnÞ:

Independence of n random variables is similarly defined, by the
product rule

FX1;...;Xnðx1; . . . ; xnÞ ¼
Yn

i¼1

PðXi a xiÞ;
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and it means that nothing that may be learned about any subset of
the variables will change the conditional distribution of the remaining
ones. If n random variables are independent, then so are any pair of
them. The converse, however, is not true. There may be random vari-
ables that are pairwise independent but that are not independent as
a set. For example, consider n ¼ 3, and let X1 and X2 have the joint
distribution

0 1

0 0.25 0.25
1 0.25 0.25

with X3 ¼ 1 if X1 ¼ X2, and X3 ¼ 0 if X1 0X2. Any pair of ðX1;X2;X3Þ
are independent, but together the three random variables are not inde-
pendent. In fact, any two of them fully determine the third.

Two random variables X and Y are identically distributed if they have
the same distribution, that is, if

fXðaÞ ¼ fYðaÞ

for any value a. Two random variables X and Y are identical if they
always assume the same value. That is, if, for every state s A S,

XðsÞ ¼ YðsÞ:

Clearly, if X and Y are identical, they are also identically distributed.
This is so because, for every a,

fXðaÞ ¼ PðX ¼ aÞ ¼ PðY ¼ aÞ ¼ fYðaÞ;

where PðX ¼ aÞ ¼ PðY ¼ aÞ follows from the fact that X ¼ a and Y ¼ a
define precisely the same event. That is, since XðsÞ ¼ YðsÞ, any s A S
belongs to the event X ¼ a if and only if it belongs to the event Y ¼ a.

By contrast, two random variables that are not identical can still be
identically distributed. For example, if X can assume the values f0; 1g
with equal probabilities, and Y ¼ 1$ X (that is, for every s, YðsÞ ¼
1$ XðsÞ), then X and Y are identically distributed, but they are not
identical. In fact, they never assume the same value.

The notion of identical distribution is similarly defined for more
than two variables. That is, X1; . . . ;Xn are identically distributed if, for
every a,

fX1ðaÞ ¼ PðX1 ¼ aÞ ¼ % % % ¼ PðXn ¼ aÞ ¼ fXnðaÞ:
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The variables X1; . . . ;Xn are said to be i.i.d. (identically and indepen-
dently distributed) if they are identically distributed and independent.

A.7.5 Law(s) of Large Numbers

Consider a sequence of i.i.d. random variables X1; . . . ;Xn; . . . . Since
they all have the same distribution, they all have the same expectation,

EXi ¼ m;

and the same variance. Assume that this variance is finite

varðXiÞ ¼ s2:

When two random variables are independent, they are also uncorre-
lated (that is, their covariance is zero). Hence the variance of their sum
is the sum of their variances.

When we consider the average of the first n random variables,

Xn ¼ 1

n

Xn

i¼1

Xi;

we observe that

EðXnÞ ¼
1

n

Xn

i¼1

EXi ¼ m;

and since any two of them are uncorrelated,

varðXnÞ ¼
1

n2

Xn

i¼1

varðXiÞ ¼
s2

n
;

which implies that the more variables we take in the average, the lower
will be the variance of the average. This, in turn, means that the aver-
age, Xn, will be, with very high probability, close to its expectation,
which is m.

In fact, more can be said. We may decide how close we want Xn to be
to m, and with what probability, and then we can find a large enough
N such that, for all n starting from N, Xn will be as close to m as we
wish with the probability we specify. Formally, for every e > 0 and
every d > 0, there exists N such that

Pðfs j jXn $ mj < d EnbNgÞ > 1$ e:
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It is also the case that the probability of the event that Xn converges
to m is 1:

P s
!!! b lim

n!y
Xn ¼ m

n o" #
¼ 1:

LLN and Relative Frequencies Suppose a certain trial or experiment
is repeated infinitely many times. In each repetition, the event A may
or may not occur. The different repetitions/trials/experiments are
assumed to be identical in terms of the probability of A occurring in
each, and independent. Then we can associate, with experiment i, a
random variable

Xi ¼
1 A occurred in experiment i

0 A did not occur in experiment i

$

The random variables ðXiÞi are independently and identically dis-
tributed (i.i.d.) with EðXiÞ ¼ p, where p is the probability of A occur-
ring in each of the experiments. The relative frequency of A in the first
n experiments is the average of these random variables,

Xn ¼
1

n

Xn

i¼1

Xi ¼
afijA occurred in experiment ig

n
:

Hence, the law of large numbers guarantees that the relative frequency
of A will converge to its probability p.
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B Formal Models

B.1 Utility Maximization

B.1.1 Definitions
Suppose there is a set of alternatives X. A binary relation7on X is sim-
ply a set of ordered pairs of elements from X, that is,7HX ! X, with
the interpretation that for any two alternatives x; y A X,

ðx; yÞ A7;

also denoted

x7 y;

means ‘‘alternative x is at least as good as alternative y in the eyes of
the decision maker’’ or ‘‘given the choice between x and y, the decision
maker may choose x.’’

It is useful to define two binary relations associated with7, which
are often called the symmetric and the asymmetric parts of7. Specifi-
cally, let us introduce the following definitions. First, we define the in-
verse of the relation7:

6¼7%1¼ fðy; xÞ j ðx; yÞ A7g;

that is, y6 x if and only if x7 y (for any x, y). The symbol 6 was
selected to make y6 x and x7 y similar, but it is a new symbol and
requires a new definition.

Do not confound the relation7between alternatives and the relation
bbetween their utility values. Later, when we have a representation of
7by a utility function, we will be able to do precisely that—to think of

x7 y



as equivalent to

uðxÞb uðyÞ;

but this equivalence is the representation we seek, and until we prove
that such a function u exists, we should be careful not to confuse 7
withb.1

Next define the symmetric part of 7 to be the relation @HX # X
defined by

@¼7V6;

that is, for every two alternatives x; y A X,

x@ y , ½ðx7 yÞ and ðy7 xÞ&:

Intuitively, x7 y means ‘‘alternative x is at least as good as alternative
y in the eyes of the decision maker,’’ and x@ y means ‘‘the decision
maker finds alternatives x and y equivalent’’ or ‘‘the decision maker is
indifferent between alternatives x and y.’’

The asymmetric part of7 is the relation1HX # X defined by

1¼7n6;

that is, for every two alternatives x; y A X,

x1 y , ½ðx7 yÞ and not ðy7 xÞ&:

Intuitively, x1 y means ‘‘the decision maker finds alternative x strictly
better than alternative y.’’

B.1.2 Axioms
The main axioms that we impose on7are as follows.

Completeness For every x; y A X, x7 y or y7 x.

(Recall that or in mathematical language is inclusive unless other-
wise stated. That is, ‘‘A or B’’ should be read as ‘‘A or B or possibly
both’’).

The completeness axiom states that the decision maker can make up
her mind between any two alternatives. This means that at each and
every possible instance of choice between x and y something will be
chosen. But it also means, implicitly, that we expect some regularity in

1. Observe that the sequence of symbols xb y need not make sense at all because the ele-
ments of X need not be numbers or vectors or any other mathematical entities.
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these choices: x is always chosen (and then we would say that x1 y),
or y is always chosen ðy1 xÞ, or sometimes x is chosen and sometimes
y. But this latter case would be modeled as equivalence ðx@ yÞ, and
the implicit assumption is that the choice between x and y would be
completely random. If, for instance, the decision maker chooses x on
even dates and y on odd dates, it would seem inappropriate to say
that she is indifferent between the two options. In fact, we may find
that the language is too restricted to represent the decision maker’s
preferences. The decision maker may seek variety and always choose
the option that has not been chosen on the previous day. In this
case, one would like to say that preferences are history- or context-
dependent and that it is, in fact, a modeling error to consider prefer-
ences over x and y themselves (rather than, say, on sequences of x’s
and y’s). More generally, when we accept the completeness axiom we
do not assume only that at each given instance of choice one of the
alternatives will end up being chosen. We also assume that it is mean-
ingful to define preferences over the alternatives, and that these alter-
natives are informative enough to tell us anything that might be
relevant for the decision under discussion.

Transitivity For every x; y; z A X, if (x7 y and y7 z), then y7 z.

Transitivity has a rather obvious meaning, and it almost seems like
part of the definition of preferences. Yet, it is easy to imagine cyclical
preferences. Moreover, such preferences may well occur in group deci-
sion making, for instance, if the group is using a majority vote. This is
the famous Condorcet paradox (see section 6.2 of the main text). As-
sume that there are three alternatives, X ¼ fx; y; zg and that one-third
of society prefers

x1 y1 z;

one-third

y1 z1 x;

and the last third

z1 x1 y:

It is easy to see that when every two pairs of alternatives come up
for a separate majority vote, there is a two-thirds majority for x1 y, a
two-thirds majority for y1 z, but also a two-thirds majority for z1 x.
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In other words, a majority vote may violate transitivity and even gen-
erate a cycle of strict preferences: x1 y1 z1 x.

Once we realize that this can happen in a majority vote in a society,
we can imagine how this can happen inside the mind of a single indi-
vidual as well. Suppose Daniel has to choose among three cars, and he
ranks them according to three criteria, such as comfort, speed, and
price. He finds it hard to quantify and trade off these criteria, so he
decides to adopt the simple rule that if one alternative is better than an-
other according to most criteria, then it should be preferred. In this
case Daniel can be thought of as if he were the aggregation of three de-
cision makers—one who cares only about comfort, one who cares only
about speed, and one who cares only about price—where his decision
rule as a ‘‘society’’ is to follow a majority vote. Then Daniel would find
that his preferences are not transitive. But if this happens, we expect
him to be confused about the choice and to dislike the situation of in-
decision. Thus, even if the transitivity axiom does not always hold, it
is generally accepted as a desirable goal.

B.1.3 Result

We are interested in a representation of a binary relation by a numeri-
cal function. Let us first define this concept more precisely.

A function u : X ! R is said to represent7 if, for every x; y A X,

x7 y , uðxÞb uðyÞ: ðB:1Þ

Proposition 1 Let X be finite. Let 7 be a binary relation on X, i.e.,
7HX # X. The following are equivalent: (i)7 is complete and transi-
tive; (ii) there exists a function u : X ! R that represents7.

B.1.4 Generalization to a Continuous Space

In many situations of interest, the set of alternatives is not finite. If we
consider a consumer who has preferences over the amount of wine she
consumes, the amount of time she spends in the pool, or the amount
of money left in her bank account, we are dealing with variables that
are continuous and that therefore may assume infinitely many values.
Thus, the set X, which may be a set of vectors of such variables, is
infinite.

Physicists might say that the amount of wine can only take finitely
many values because there are a finite number of particles in a glass
of wine (and perhaps also in the world). This is certainly true of the
amount of money—it is only measured up to cents. And the accuracy
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of measurement is also limited in the case of time, temperature, and so
forth. So maybe the world is finite after all, and we don’t need to deal
with extension of proposition 1?

The fact is that finite models may be very awkward and inconve-
nient. For example, assume there are supply and demand curves that
slope in the right directions2 but fail to intersect because they are only
defined for finitely many prices. (In fact, they are not really curves but
only finite collections of points in R2.) It would be silly to conclude that
the market will never be at equilibrium simply because there is no pre-
cise price at which supply and demand are equal. You might recall a
similar discussion in statistics. The very first time you were introduced
to continuous random variables, you might have wondered who really
needs them in a finite world. But then you find out that many assump-
tions and conclusions are greatly simplified by the assumption of
continuity.

In short, we would like to have a similar theorem, guaranteeing util-
ity representation of a binary relation, also in the case that the set of
alternatives is infinite. There are several ways to obtain such a theo-
rem. The one presented here also guarantees that the utility function
be continuous. To make this a meaningful statement, we have to have
a notion of convergence in the set X, a topology. But in order to avoid
complications, let us simply assume that X is a subset of Rn for some
nb 1 and think of convergence as it is usually defined in Rn.

It is not always the case that a complete and transitive relation on Rn

can be represented by a numerical function. (A famous counterexam-
ple was provided by Gerard Debreu.3) An additional condition that
we may impose is that the relation7be continuous. What is meant by
this is that if x1 y, then all the points that are very close to x are also
strictly better than y, and vice versa, all the points that are very close
to y are also strictly worse than x.

Continuity For every x A X, the sets fy A X j x1 yg and fy A X j
y1 xg are open in X.

(Recall that a set is open if, for every point in it, there is a whole
neighborhood contained in the set.)

2. The supply curve, which indicates the quantity supplied as a function of price, is
increasing. The demand curve, which specifies the quantity demanded as a function of
price, is decreasing.
3. G. Debreu, The Theory of Value: An Axiomatic Analysis of Economic Equilibrium (New
Haven: Yale University Press, 1959), ch. 2, prob. 6.
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To see why this axiom captures the notion of continuity, we may
think of a function f : R ! R and a point x A R for which f ðxÞ > 0. If f
is continuous, then there is a neighborhood of x for which f is positive.
If we replace ‘‘positive’’ by ‘‘strictly better than y’’ for a fixed y, we see
the similarity between these two notions of continuity.

Alternatively, we can think of continuity as requiring that for every
x A X, the sets

fy A X j x7 yg

and

fy A X j y7 xg

be closed in X. That is, if we consider a convergent sequence ðynÞnb1,
yn ! y, such that yn 7 x for all n, then also y7 x, and if x7 yn for all
n, then also x7 y. In other words, if we have a weak preference all
along the sequence (either from below or from above), we should have
the same weak preference at the limit. This condition is what we were
after.

Theorem 2 (Debreu) Let 7 be a binary relation on X, that is,
7HX # X. The following are equivalent: (i)7 is complete, transitive,
and continuous; (ii) there exists a continuous function u : X ! R that
represents7.

B.2 Convexity

As a preparation for the discussion of constrained optimization, it is
useful to have some definitions of convex sets, convex and concave
functions, and so on.

B.2.1 Convex Sets

A set AHRn is convex if, for every x; y A A and every l A ½0; 1%,
lxþ ð1' lÞy A A. That is, whenever two points are in the set, the line
segment connecting them is also in the set. If we imagine the set A as a
room, convexity means that any two people in the room can see each
other.

B.2.2 Convex and Concave Functions

A function f : Rn ! R is convex if its graph is never above the strings
that connect points on it. As an example, we may think of
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f ðxÞ ¼ x2

for n ¼ 1. If we draw the graph of this function and take any two
points on the graph, when we connect them by a segment (the string),
the graph of the function will be below it (or at least not above the seg-
ment). The same will be true for

f ðx1; x2Þ ¼ x21 þ x22

if n ¼ 2.
Formally, f : Rn ! R is convex if for every x; y A A and every

l A ½0; 1&,

f ðlxþ ð1' lÞyÞa lf ðxÞ þ ð1' lÞ f ðyÞ;

and it is strictly convex if this inequality is strict whenever x0 y and
0 < l < 1.

To see the geometric interpretation of this condition, imagine that
n ¼ 1, and observe that lxþ ð1' lÞy is a point on the interval con-
necting x and y. Similarly, lf ðxÞ þ ð1' lÞ f ðyÞ is a point on the inter-
val connecting f ðxÞ and f ðyÞ. Moreover, if we connect the two
points

ðx; f ðxÞÞ; ðy; f ðyÞÞ A R2

by a segment (which is a string of the function f ), we get precisely the
points

fðlxþ ð1' lÞy; lf ðxÞ þ ð1' lÞ f ðyÞÞ j l A ½0; 1&g:

For l ¼ 1 the point is ðx; f ðxÞÞ; for l ¼ 0 it is ðy; f ðyÞÞ; for l ¼ 0:5, the
point has a first coordinate that is the arithmetic average of x and y,
and a second coordinate that is the average of their f values. Generally,
for every l, the first coordinate is the ðl; ð1' lÞÞ average between x
and y, and the second coordinate is corresponding average of their f
values.

Convexity of the function demands that for every l A ½0; 1&, the value
of the function at the ðl; ð1' lÞÞ average between x and y, that is,
f ðlxþ ð1' lÞyÞ, will not exceed the height of the string (connecting
ðx; f ðxÞÞ and ðy; f ðyÞÞÞ at the same point.

Next assume that n ¼ 2 and repeat the argument to show that this
geometric interpretation is valid in general.
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A function f : Rn ! R is convex if and only if the following set is
convex4

fðx; zÞ A Rnþ1 j zb f ðxÞg:

If n ¼ 1 and f is twice differentiable, convexity of f is equivalent
to the condition that f 00 b 0, that is, that the first derivative, f 0, is non-
decreasing. When n > 1, there are similar conditions, expressed in
terms of the matrix of second derivatives, which are equivalent to con-
vexity.

Concave functions are defined in the same way, with the converse
inequality. All that is true of convex functions is true of concave func-
tions, with the opposite inequality. In fact, we could define f to be con-
cave if %f is convex. But we will spell it out.

A function f : Rn ! R is concave if for every x; y A A and every
l A ½0; 1',

f ðlxþ ð1% lÞyÞb lf ðxÞ þ ð1% lÞ f ðyÞ;

and it is strictly concave if this inequality is strict whenever x0 y and
0 < l < 1.

Thus, f is concave if the graph of the function is never below the
strings that connect points on it. Equivalently, f : Rn ! R is concave if
and only if the following set is convex

fðx; zÞ A Rnþ1 j za f ðxÞg:

(This set is still required to be convex, not concave. In fact, we didn’t
define the notion of a concave set, and we don’t have such a useful def-
inition. The difference between this condition for convex and concave
functions is in the direction of the inequality. The resulting set in both
cases is required to be a convex set as a subset of Rnþ1.)

If n ¼ 1 and f is twice differentiable, concavity of f is equivalent
to the condition that f 00 a 0, that is, that the first derivative, f 0, is
nonincreasing.

An affine function is a shifted linear function. That is, f : Rn ! R is
affine if

4. Observe that the vector ðx; zÞ refers to the concatenation of x, which is a vector of n
real numbers, with z, which is another real number—together a vector of ðnþ 1Þ real
numbers.
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f ðxÞ ¼
Xn

i¼1

aixi þ c;

where faig and c are real numbers.
An affine function is both convex and concave (but not strictly so).

The converse is also true: a function that is both convex and concave is
affine.

If we take a convex function f , we can, at each x, look at the tan-
gent to the graph of f . This would be a line if n ¼ 1 and a hyperplane
more generally. Formally, for every x there exists an affine function
lx : R

n ! R such that

lxðxÞ ¼ f ðxÞ;

and for every y A Rn

lxðyÞa f ðyÞ:

If we take all these functions flxgx, we find that their maximum is f .
That is, for every y A Rn

f ðyÞ ¼ max
x

lxðyÞ:

Thus, a convex function can be described as the maximum of a col-
lection of affine functions. Conversely, the maximum of affine func-
tions is always convex. Hence, a function is convex if and only if it is
the maximum of affine functions.

Similarly, a function is concave if and only if it is the minimum of a
collection of affine functions.

B.2.3 Quasi-convex and Quasi-concave Functions
Consider the convex function

f ðx1; x2Þ ¼ x21 þ x22 :

Suppose that I cut it at a given height, z, and ask which points ðx1; x2Þ
do not exceed z in their f value. That is, I look at

fx A R2 j f ðxÞa zg:

It is easy to see that this set will be convex. This gives rise to the follow-
ing definition.
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A function f : Rn ! R is quasi-convex if, for every z A R,

fx A Rn j f ðxÞa zg

is a convex set.
Observe that this set is a subset of Rn and that we have a (poten-

tially) different such set for every value of z, whereas in the character-
ization of convex functions given previously we used the convexity of
a single set in Rnþ1.

The term quasi should suggest that every convex function is also
quasi-convex. Indeed, if

y;w A fx A Rn j f ðxÞa zg;

then

f ðyÞ; f ðwÞa z;

and for every l A ½0; 1%,

f ðlyþ ð1& lÞwÞa lf ðyÞ þ ð1& lÞ f ðwÞ

a lzþ ð1& lÞz ¼ z;

and this means that

lyþ ð1& lÞw A fx A Rn j f ðxÞa zg:

Since this is true for every y, w in fx A Rn j f ðxÞa zg, this set is convex
for every z, and this is the definition of quasi-convexity of the func-
tion f .

Is every quasi-convex function is convex? The answer is negative,
(otherwise we wouldn’t use a different term for quasi-convexity). In-
deed, it suffices to consider n ¼ 1 and observe that

f ðxÞ ¼ x3

is quasi-convex but not convex. Indeed, when we look at the sets

fx A Rn j f ðxÞa zg

for various values of z A R, we simply get the convex sets ð&y; a% for
some a (in fact, for a ¼ z1=3). The collection of these sets, when we
range over all possible values of z, does not look any different for the
original function, x3, than it would if we looked at the function x or
x1=3.
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Again, everything we can say of quasi-convex functions has a coun-
terpart for quasi-concave ones. A function f : Rn ! R is quasi-concave
if, for every z A R,

fx A Rn j f ðxÞb zg

is a convex set.
Imagine now the parabola upside down,

f ðx1; x2Þ ¼ $x21 $ x22 ;

and when we cut it at a certain height, z, and look at the dome above
the cut, the projection of this dome on the x1, x2 plane is a circle. The
fact that it is a convex set follows from the fact that f is quasi-concave.

B.3 Constrained Optimization

B.3.1 Convex Problems

Constrained optimization problems are much easier to deal with when
they are convex. Roughly, we want everything to be convex, both on
the feasibility and on the desirability side.

Convexity of the feasible set is simple to define. We require that the
set F be convex.

What is meant by ‘‘convex preferences’’? The answer is that we wish
the ‘‘at least as desirable as’’ sets to be convex. Explicitly, for every
x A Rn, we may consider the ‘‘at least as good as’’ set

fy A X j y7 xg

and require that it be convex. If we have a utility function u that repre-
sents7, we require that the function be quasi-concave. Indeed, if u is
quasi-concave, then for every a A R, the set

fy A X j uðyÞb ag

is convex. When we range over all values of a, we obtain all sets of the
form fy A X j y7 xg, and thus a quasi-concave u defines convex prefer-
ences. Observe that quasi-concavity is the appropriate term when the
utility is given only up to an arbitrary (increasing) monotone transfor-
mation (utility is only ordinal). Whereas a concave function can be
replaced by a monotone transformation that results in a nonconcave
function, a quasi-concave function will remain quasi-concave after any
increasing transformation.
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Convex problems (in which both the feasible set and preferences are
convex) have several nice properties. In particular, local optima are
also global optima. This means that looking at first-order conditions is
often sufficient. If these conditions identify a local maximum, we can
rest assured that it is also a global one. Another important feature of
convex problems is that for such problems one can devise simple algo-
rithms of small local improvements that converge to the global opti-
mum. This is very useful if we are trying to solve the problem on a
computer. But, more important, it also says that real people may be-
have as if they were solving such problems optimally. If a decision
maker makes small improvements when these exist, we may assume
that, as time goes by, he converges to the optimal solution. Thus, for
large and complex problems, the assumption that people maximize
utility subject to their feasible set is much more plausible in convex
problems than it is in general.

B.3.2 Example: The Consumer Problem

Let us look at the consumer problem again. The decision variables are
x1; . . . ; xn A Rþ, where xi ðxi b 0Þ is the amount consumed of good i.
The consumer has an income Ib 0, and she faces prices p1; . . . ; pn A
Rþþ (that is, pi > 0 for all ia n). The problem is therefore

max
x1;...;xn

uðx1; . . . ; xnÞ

subject to

p1x1 þ $ $ $ þ pnxn a I

xi b 0

B.3.3 Algebraic Approach
Let us further assume that u is strictly monotone in all its arguments,
namely, that the consumer prefers more of each good to less. More-
over, we want to assume that u is quasi-concave, so that the ‘‘better
than’’ sets are convex. Under these assumptions we may conclude that
the optimal solution will be on the budget constraint, namely, will
satisfy

p1x1 þ $ $ $ þ pnxn ¼ I;

and if a point x ¼ ðx1; . . . ; xnÞ is a local maximum, it is also a global
one. Hence it makes sense to seek a local maximum, namely, to ask
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whether a certain point on the budget constraint happens to maximize
utility in a certain neighborhood (of itself on this constraint).

If the utility function is also differentiable, we may use calculus to
help identify the optimal solution. Specifically, the first-order condition
for this problem can be obtained by differentiating the Lagrangian

Lðx1; . . . ; xn; lÞ ¼ uðx1; . . . ; xnÞ $ l½p1x1 þ ' ' ' þ pnxn $ I(

and equating all first (partial) derivatives to zero. This yields

qL

qxi
¼ qu

qxi
$ lpi ¼ 0

for all ia n and

qL

dl
¼ $½p1x1 þ ' ' ' þ pnxn $ I( ¼ 0:

The second equality is simply the budget constraint, whereas the
first implies that for all i,

ui
pi

¼ const ¼ l;

where ui ¼ qu
dxi

. Thus, for any two goods i, j, we have

ui
pi

¼
uj
pj

ðB:2Þ

or

ui
uj

¼ pi
pj
: ðB:3Þ

B.3.4 Geometric Approach

Each of these equivalent conditions has an intuitive interpretation.
Let us start with the second, which can be understood geometrically.
We argue that it means that the feasible set and the desirable (‘‘better
than’’) set are tangent to each other. To see this, assume there are only
two goods, i ¼ 1; 2. Consider the budget constraint

p1x1 þ p2x2 ¼ I;

and observe that its slope, at a point x, can be computed by taking
differentials:
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p1 dx1 þ p2 dx2 ¼ 0;

which means

dx1
dx2

¼ # p1
p2

: ðB:4Þ

Next consider the ‘‘better than’’ set, and focus on the tangent to this
set at the point x. We get a line (more generally, a hyperplane) that
goes through the point x, and satisfies

du ¼ u1 dx1 þ u2 dx2 ¼ 0;

that is, a line with a slope

dx1
dx2

¼ # u1
u2

: ðB:5Þ

This will also be the slope of the indifference curve (the set of points
that are indifferent to x) at x. Clearly, condition (B.3) means that the
slope of the budget constraint, (B.4), equals the slope of the indifference
curve (B.5).

Why is this a condition for optimality? We may draw several in-
difference curves and superimpose them on the budget constraint. In
general, we can always take this geometric approach to optimization:
draw the feasible set, and then compare it to the ‘‘better than’’ sets. If
an indifference curve, which is the boundary of a ‘‘better than’’ set,
does not intersect the feasible set, it indicates a level of utility that can-
not be reached. It is in the category of wishful thinking. A rational de-
cision maker will be expected to give up this level of utility and settle
for a lower one.

If, on the other hand, the curve cuts through the feasible set, the cor-
responding level of utility is reachable, but it is not the highest such
level. Since the curve is strictly in the interior of the feasible set, there
are feasible points on either side of it. Assuming that preferences are
monotone, that is, that the decision maker prefers more to less, one
side of the curve has a higher utility level than the curve itself. Since it
is feasible, the curve we started with cannot be optimal. Here a rational
decision maker will be expected to strive for more and look for a
higher utility level.

What is the highest utility level that is still feasible? It has to be rep-
resented by an indifference curve that is not disjoint with the feasible
set yet does not cut through it. In other words, the intersection of the
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feasible set and the ‘‘better than’’ set is nonempty but has an empty in-
terior (it has zero volume, or zero area in a two-dimensional problem).
If both sets are smooth, they have to be tangent to each other. This tan-
gency condition is precisely what equation (B.3) yields.

B.3.5 Economic Approach

The economic approach is explained in the main text. But it may be
worthwhile to repeat it in a slightly more rigorous way. Consider con-
dition (B.2). Again, assume that I already decided on spending most of
my budget, and I’m looking at the last dollar, asking whether I should
spend it on good i or on good j. If I spend it on i, how much of this
good will I get? At price pi, one dollar would buy 1

pi
units of the good.

How much additional utility will I get from this quantity? Assuming
that one dollar is relatively small and that correspondingly the amount
of good i, 1

pi
, is also relatively small, I can approximate the marginal

utility of 1
pi
extra units by

1

pi
! qu
qxi

¼ ui
pi
:

Obviously, the same reasoning would apply to good j. Spending the
dollar on j would result in an increase in utility that is approximately
uj
pj
. Now, if

ui
pi

>
uj
pj
;

one extra dollar spent on i will yield a higher marginal utility than the
same dollar spent on j. Put differently, we can take one dollar of the
amount spent on j and transfer it to the amount spent on i, and be bet-
ter off, since the utility lost on j,

uj
pj
, is more than compensated for by

the utility gained on i, uipi .
This argument assumes that we can indeed transfer one dollar from

good j to good i. That is, that we are at an interior point. If we consider
a boundary point, where we don’t spend any money on j in any case,
this inequality may be consistent with optimality.

If one dollar is not relatively small, we can repeat this argument with
e dollars, where e is small enough for the derivatives to provide good
approximations. Then we find that e dollars are translated to quantities
e
pi
and e

pj
, if spent on goods i or j, respectively, and that these quantities

yield marginal utilities of eui
pi

and
euj
pj
, respectively. Hence, any of the

inequalities
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ui
pi

>
uj
pj

or
ui
pi

<
uj
pj

indicates that we are not at an optimal (interior) point. Condition (B.2)
is a powerful tool in identifying optimal points. It says that small
changes in the budget allocation, in other words, small changes along
the boundary of the budget constraint, will not yield an improvement.

B.3.6 Comments

Two important comments are in order. First, the previous arguments
are not restricted to a feasible set defined by a simple budget con-
straint, that is, by a linear inequality. The feasible set may be defined
by one or many nonlinear constraints. What is crucial is that it be
convex.

Second, condition (B.2) is necessary only if the optimal solution is at
a point where the sets involved—the feasible set and the ‘‘better than’’
set—are smooth enough to have a unique tangent (supporting hyper-
plane, that is, a hyperplane defined by a linear equation that goes
through the point in question, and such that the entire set is on one of
its sides). An optimal solution may exist at a point where one of the
sets has kinks, and in this case slopes and derivatives may not be well
defined.

Still, the first-order conditions, namely, the equality of slopes (or
ratios of derivatives) are sufficient for optimality in convex problems,
that is, problems in which both the feasible set and the ‘‘better than’’
sets are convex. It is therefore a useful technique for finding optimal
solutions in many problems. Moreover, it provides us with very pow-
erful insights. In particular, the marginal way of thinking about alter-
natives, which we saw in the economic interpretation, appears in many
problems within and outside of economics.

B.4 vNM’s Theorem

B.4.1 Setup

vNM’s original formulation involved decision trees in which com-
pound lotteries were explicitly modeled. We use here a more compact
formulation, due to Niels-Erik Jensen and Peter Fishburn,5 which

5. N. E. Jensen, ‘‘An Introduction to Bernoullian Utility Theory,’’ pts. I and II, Swedish
Journal of Economics 69 (1967): 163–183, 229–247; P. C. Fishburn, Utility Theory for Decision
Making (New York: Wiley, 1970).
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implicitly assumes that compound lotteries are simplified according to
Bayes’ formula. Thus, lotteries are defined by their distributions, and
the notion of mixture implicitly supposes that the decision maker is
quite sophisticated in terms of his probability calculations.

Let X be a set of alternatives. X need not consist of sums of money or
consumption bundles, and it may include outcomes such as death.

The objects of choice are lotteries. We can think of a lottery as a func-
tion from the set of outcomes, X, to probabilities. That is, if P is a lot-
tery and x is an outcome, PðxÞ is the probability of getting x if we
choose lottery P. It will be convenient to think of X as potentially infi-
nite, as is the real line, for example. At the same time, we don’t need to
consider lotteries that may assume infinitely many values. We there-
fore assume that while X is potentially infinite, each particular lottery
P can only assume finitely many values.

The set of all lotteries is therefore

L ¼ P : X ! ½0; 1%
!!!!
afxjPðxÞ > 0g < y;P

x AX PðxÞ ¼ 1

" #
:

Observe that the expression
P

x AX PðxÞ ¼ 1 is well defined thanks to
the finite support condition that precedes it.

A mixing operation is performed on L, defined for every P;Q A L and
every a A ½0; 1% as follows: aPþ ð1' aÞQ A L is given by

ðaPþ ð1' aÞQÞðxÞ ¼ aPðxÞ þ ð1' aÞQðxÞ

for every x A X. The intuition behind this operation is of conditional
probabilities. Assume that I offer you a compound lottery that will
give you the lottery P with probability a and the lottery Q with proba-
bility ð1' aÞ. You can ask what is the probability of obtaining a certain
outcome x, and observe that it is indeed a times the conditional proba-
bility of x if you get P plus ð1' aÞ times the conditional probability of x
if you get Q.

Since the objects of choice are lotteries, the observable choices are
modeled by a binary relation on L,7H L( L.

B.4.2 The vNM Axioms

The vNM axioms are

Weak order 7 is complete and transitive.

Continuity For every P;Q;R A L, if P1Q1R, there exist a; b A ð0; 1Þ
such that aPþ ð1' aÞR1Q1 bPþ ð1' bÞR:
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Independence For every P;Q;R A L, and every a A ð0; 1Þ, P7Q if and
only if aPþ ð1$ aÞR7 aQþ ð1$ aÞR.

The weak order axiom is not very different from the same assump-
tion in chapter 2 of the main text. The other two axioms are new and
deserve a short discussion.

B.4.3 Continuity
Continuity may be viewed as a technical condition needed for the
mathematical representation and for the proof to work. To understand
its meaning, consider the following example, supposedly challenging
continuity. Assume that P guarantees one dollar, Q guarantees zero
dollars, and R guarantees death. You are likely to prefer one dollar to
no dollars, and no dollars to death. That is, you would probably ex-
hibit preferences P1Q1R. The axiom then demands that for a high
enough a < 1, you will also exhibit the preference

aPþ ð1$ aÞR1Q;

namely, that you will be willing to risk your life with probability
ð1$ aÞ in order to gain one dollar. The point of the example is that
you are supposed to say that no matter how small the probability of
death ð1$ aÞ, you will not risk your life for one dollar.

A counterargument to this example (suggested by Howard Raiffa) is
that we often do indeed take such risks. For instance, suppose you are
about to buy a newspaper, which costs one dollar. But you see that it is
freely distributed on the other side of the street. Would you cross the
street to get it at no cost? If you answer in the affirmative, you are will-
ing to accept a certain risk, albeit very small, of losing your life (in traf-
fic) in order to save one dollar.

This counterargument can be challenged in several ways. For in-
stance, you may argue that even if you don’t cross the street, your life
is not guaranteed with probability 1. Indeed, a truck driver who falls
asleep may hit you anyway. In this case, we are not comparing death
with probability 0 to death with probability ð1$ aÞ. And, the argument
goes, it is possible that if you had true certainty on your side of the
street, you would not have crossed the street, thereby violating the
axiom.

It appears that framing also matters in this example. I may be about
to cross the street in order to get the free copy of the newspaper, but if
you stop me and say, ‘‘What are you doing? Are you nuts, to risk your
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life this way? Think of what could happen! Think of your family!’’ I
might cave in and give up the free paper. It is not obvious which be-
havior is more relevant, namely, the decision making without the
guilt-inducing speech or with it. Presumably, this depends on the
application.

In any event, we understand the continuity axiom. Moreover, if we
consider applications that do not involve extreme risks such as death,
it appears to be a reasonable assumption.

B.4.4 Independence

The independence axiom is related to dynamic consistency. However,
it involves several steps. Consider the following four choice situations:

1. You are asked to make a choice between P and Q.

2. Nature will first decide whether, with probability ð1" aÞ, you get R,
and then you have no choice to make. Alternatively, with probability
a, nature will let you choose between P and Q.

3. The choices are as in (2), but you have to commit to making your
choice before you observe Nature’s move.

4. You have to choose between two branches. In one, Nature will first
decide whether, with probability ð1" aÞ, you get R, or, with probabil-
ity a, you get P. The second branch is identical, with Q replacing P.

Clearly, (4) is the choice between aPþ ð1" aÞR and aQþ ð1" aÞR.
To relate the choice in (1) to that in (4), we can use (2) and (3) as inter-
mediary steps. Compare (1) and (2). In (2), if you are called upon to act,
you are choosing between P and Q. At that point R will be a counter-
factual world. Why would it be relevant? Hence, it is argued, you can
ignore the possibility that did not happen, R, and make your decision
in (2) identical to that in (1).

The distinction between (2) and (3) has to do only with the timing of
your decision. Should you make different choices in these scenarios,
you would not be dynamically consistent. It is as if you plan in (3) to
make a given choice, but when you get the chance to make it, you do
(or would like to do) something else in (2). Observe that when you
make a choice in (3), you know that this choice is conditional on get-
ting to the decision node. Hence, the additional information you have
should not change this conditional choice.

Finally, the alleged equivalence between (3) and (4) relies on chang-
ing the order of your move (to which you already committed) and
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Nature’s move. As such, this is an axiom of reduction of compound
lotteries, assuming that the order of the draws does not matter as long
as the distributions on outcomes, induced by your choices, are the
same.

B.4.5 The Theorem

Finally, the theorem can be stated.

Theorem 3 (vNM) Let there be given a relation7H L! L. The follow-
ing are equivalent: (i)7 satisfies weak order, continuity, and indepen-
dence; (ii) there exists u : X ! R such that, for every P;Q A L,

P7Q iff
X

x AX

PðxÞuðxÞb
X

x AX

QðxÞuðxÞ:

Moreover, in this case u is unique up to a positive linear transforma-
tion (plt). That is, v : X ! R satisfies, for every P;Q A L,

P7Q iff
X

x AX

PðxÞvðxÞb
X

x AX

QðxÞvðxÞ

if and only if there are a > 0 and b A R such that vðxÞ ¼ auðxÞ þ b for
every x A X.

Thus, we find that the theory of expected utility maximization is
not just one arbitrary generalization of expected value maximization.
There are quite compelling reasons to maximize expected utility (in a
normative application) as well as to believe that this is what people
naturally tend to do (in a descriptive application). If we put aside the
more technical condition of continuity, we find that expected utility
maximization is equivalent to following a weak order that is linear in
probabilities; this linearity is basically what the independence axiom
says.

B.5 Ignoring Base Probabilities

The disease example discussed in section 5.4.1 of the main text illus-
trates that people often mistake PðAjBÞ for PðBjAÞ. In that example, if
you had the disease, the test would show it with probability 90 per-
cent; if you didn’t, the test might still show a false positive with proba-
bility 5 percent. Suppose you took the test and you tested positive.
What was the probability of your actually having the disease?
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Let D be the event of having the disease and T be the event of testing
positive. Then

PðTjDÞ ¼ :90;

PðTjDcÞ ¼ :05:

What is PðDjTÞ?
The definition of conditional probability says that

PðDjTÞ ¼ PðDVTÞ
PðTÞ

:

Trying to get closer to the given data, we may split the event T into
two disjoint events:

T ¼ ðDVTÞU ðDc VTÞ:

In other words, one may test positive if one is sick ðDVTÞ but also if
one is healthy ðDc VTÞ, so

PðTÞ ¼ PðDVTÞ þ PðDc VTÞ

and

PðDjTÞ ¼ PðDVTÞ
PðTÞ

¼ PðDVTÞ
PðDVTÞ þ PðDc VTÞ :

Now we can try to relate each of the probabilities in the denominator
to the conditional probabilities we are given. Specifically,

PðDVTÞ ¼ PðDÞPðTjDÞ ¼ :90PðDÞ

and

PðDc VTÞ ¼ PðDcÞPðTjDcÞ ¼ :05½1& PðDÞ'

(recalling that the probability of no disease, PðDcÞ, and the probability
of disease have to sum up to 1.) Putting it all together, we get

PðDjTÞ ¼ PðDVTÞ
PðTÞ

¼ PðDVTÞ
PðDVTÞ þ PðDc VTÞ
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¼ PðDÞPðTjDÞ
PðDÞPðTjDÞ þ PðDcÞPðTjDcÞ

¼ :90PðDÞ
:90PðDÞ þ :05½1& PðDÞ' :

This number can be anywhere in ½0; 1'. Indeed, suppose that we are
dealing with a disease that is known to be extinct. Thus, PðDÞ ¼ 0. The
accuracy of the test remains the same: PðTjDÞ ¼ :90, and PðTjDcÞ ¼ :05,
but we have other reasons to believe that the a priori probability of
having the disease is zero. Hence, whatever the test shows, your poste-
rior probability is still zero. If you test positive, you should attribute it
to the inaccuracy of the test (the term :05½1& PðDÞ' in the denominator)
rather than to having the disease (the term :90PðDÞ). By contrast, if you
are in a hospital ward consisting only of previously diagnosed patients,
and your prior probability of having the disease is PðDÞ ¼ 1, your pos-
terior probability will be 1 as well (and this will be the case even if you
tested negative).

To see why Kahneman and Tversky called this phenomenon ‘‘ignor-
ing base probabilities,’’ observe that what relates the conditional prob-
ability of A given B to the conditional probability of B given A is the
ratio of the unconditional (base) probabilities:

PðAjBÞ ¼ PðAÞ
PðBÞ

PðBjAÞ;

and the confusion of PðBjAÞ for PðAjBÞ is tantamount to ignoring the
term PðAÞ=PðBÞ.

B.6 Arrow’s Impossibility Theorem

Let N ¼ f1; 2; . . . ; ng be the set of individuals, and let X be the set of
alternatives. Assume that X is finite, with jXjb 3. Each individual is
assumed to have a preference relation over X. For simplicity, assume
that there are no indifferences, so that for each i A N, there is a relation
7iHX ( X that is complete, transitive, and antisymmetric (namely,
x7i y and y7i x imply x ¼ y.) Alternatively, we may assume that for
each individual i A N there is a ‘‘strictly prefer’’ relation1iHX ( X that
is transitive and that satisfies

x0 y , ½x1i y or y1i x':
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(If7i is complete, transitive, and antisymmetric, its asymmetric part1i

satisfies this condition.)
The list of preference relations ð71; . . . ;7nÞ ¼ ð7iÞi is called a profile.

It indicates how everyone in society ranks the alternatives. Arrow’s
theorem does not apply to one particular profile but to a function that
is assumed to define a social preference for any possible profile of indi-
vidual preferences. Formally, let

R ¼ f7HX $ X j7 is complete; transitive; antisymmetricg

be the set of all possible preference relations. We consider functions
that take profiles, or n-tuples of elements in R into R itself. That is, the
theorem will be about creatures of the type

f : Rn ! R:

Note that all profiles, that is, all n-tuples of relations (one for each in-
dividual), are considered. This can be viewed as an implicit assump-
tion that is sometimes referred to explicitly as ‘‘full domain.’’

For such functions f we are interested in two axioms:

Unanimity For all x; y A X, if x7i y Ei A N, then xf ðð7iÞiÞy.

The unanimity axiom says that if everyone prefers x to y, then so
should society.

Independence of Irrelevant Alternatives ( IIA) For all x; y A X, ð7iÞi,
ð70

i Þi, if x7i y , x70
i y, Ei A N, then xf ðð7iÞiÞy , xf ðð70

i ÞiÞy.

The IIA axiom says that the social preference between two spe-
cific alternatives, x and y, only depends on individual preferences be-
tween these two alternatives. That is, suppose we compare two
different profiles, ð7iÞi, ð7

0
i Þi, and find that they are vastly different

in many ways, but it so happens that when we restrict attention
to the pair fx; yg, the two profiles look the same: for each and every
individual, x is considered to be better than y according to7i if and
only if it is better than y according to 70

i . The axiom requires that
when we aggregate preferences according to the function f , and con-
sider the aggregation of ð7iÞi, that is f ðð7iÞiÞ, and the aggregation of
ð70

i Þi, which is denoted f ðð70
i ÞiÞ, we find that these two aggregated

relations rank x and y in the same way.
The final definition we need is the following:
A function f is dictatorial if there exists j A N such that for every ð7iÞi

and every x; y A X,
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xf ðð7iÞiÞy , x7j y:

That is, f is dictatorial if there exists one individual, j, such that, what-
ever the others think, society simply adopts j’s preferences. We can fi-
nally state

Theorem 4 (Arrow) f satisfies unanimity and IIA iff it is dictatorial.

Arrow’s theorem can be generalized to the case in which the prefer-
ence relations admit indifferences (that is, are not necessarily antisym-
metric). In this case, the unanimity axiom has to be strengthened to
apply both to weak and to strict preferences.6

B.7 Nash Equilibrium

A game is a triple ðN; ðSiÞi AN; ðhiÞiÞ, where N ¼ f1; . . . ; ng is a set of
players, Si is the (nonempty) set of strategies of player i, and

hi : S1
Y

i AN

Si ! R

is player i’s vNM utility function.
A selection of strategies s ¼ ðs1; . . . ; snÞ A S is a Nash equilibrium (in

pure strategies) if for every i A N,

hðsÞb hðs$i; tiÞ; Eti A Si;

where ðs$i; tiÞ A S is the n-tuple of strategies obtained by replacing si
by ti in s. In other words, a selection of strategies is a Nash equilibrium
if, given what the others are choosing, each player is choosing a best
response.

To model random choice, we extend the strategy set of each player
to mixed strategies, that is, to the set of distributions over the set of
pure strategies:

Si ¼ si : Si ! ½0; 1&
!!!!
X

si A Si

siðsiÞ ¼ 1

( )

:

6. Other formulations of Arrow’s involve a choice function, selecting a single alternative
x A X for a profile ð7iÞi. In these formulations the IIA axiom is replaced by a monotonic-
ity axiom stating that if x is chosen for a given profile ð7iÞi, x will also be chosen in any
profile where x is only ‘‘better,’’ in terms of pairwise comparisons with all the others.
This axiom is similar in its strengths and weaknesses to the IIA in that it requires that di-
rect pairwise comparisons, not concatenations thereof, would hold sufficient information
to determine social preferences.
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Given a mixed strategy si A Si for each i A N, we define i’s payoff to
be the expected utility

Hiðs1; . . . snÞ ¼
X

s A S

"
Y

j AN

sjðsjÞ

#

hiðsÞ;

and we define a Nash equilibrium in mixed strategies to be a Nash
equilibrium of the extended game in which the sets of strategies are
ðSiÞi and the payoff functions—ðHiÞi.

Mixed strategies always admit Nash equilibria.

Theorem 5 (Nash) Let ðN; ðSiÞi AN; ðhiÞiÞ be a game in which Si is finite
for each i.7 Then it has a Nash equilibrium in mixed strategies.

7. Recall that in the formulation here N was also assumed finite.
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